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Renormalization of nonmagnetic impurity potential by strong electron correlation is investigated in detail.
We adopt the t-t�-t�-J model and consider mainly a �-function impurity potential. The variational Monte Carlo
method shows that impurity potential scattering matrix elements between Gutzwiller-projected quasiparticle
excited states are as strongly renormalized as the hopping terms. Such renormalization is also seen by the
Bogoliubov–de Gennes equation with an impurity, where the strong correlation is treated by a Gutzwiller
mean-field theory with local renormalization factors and local chemical potentials. Namely, the �-function
potential is effectively weakened and broadened. We emphasize the importance of including the local chemical
potential, which is paid little attention to in the literature, by physical consideration of the doping dependence
of a local hole density. We also investigate effect of smooth impurity potential variation; the strong correlation
yields anticorrelation between the gap energy and the coherence peak height simultaneously with large gap
distribution, which is consistent with the experiments.
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I. INTRODUCTION

Anderson’s1 theorem tells us that the s-wave supercon-
ductivity is insensitive to small potential scattering. On the
other hand, the d-wave superconductivity has zero supercon-
ducting gap in the nodal direction and thus may be sensitive
to disorder. However, experimental observation of the high-
temperature superconductivity, which many people are
nowadays convinced has d-wave symmetry, seems robust
against disorder.2–5 For example, the high-temperature super-
conductors seem to exhibit more conventional behavior at
higher hole doping rates where the systems are supposed to
be more disordered. Furthermore, the local density of states
�DOS� �LDOS� measured by the scanning tunneling micro-
scope �STM� �Refs. 6 and 7� shows clear V shape at low
energy that indicates the d-wave nodes are not much influ-
enced by disorder. Theoretically, it is proposed that this pro-
tection of V shape is due to strong Coulomb repulsion be-
tween electrons.8–10 Hence, detailed studies of effects of
strong correlation for impurity scattering are necessary.

In correlated systems, the model parameters are effec-
tively renormalized. For example, a hopping term is renor-
malized by a factor smaller than unity because hopping is
more difficult in the presence of the double occupancy pro-
hibition. On the other hand, an exchange term is renormal-
ized by a factor larger than unity because each site is more
often singly occupied. Then, the question is: how are impu-
rity terms renormalized? In our previous paper,10 we have
presented preliminary results of the impurity renormaliza-
tion. That is, local modulations of the hopping and the ex-
change term tend to be enhanced by the local renormaliza-
tion factors, and impurity potential tends to be screened by
the effective local chemical potentials originated from mini-
mization of the total energy. In this paper, we investigate in
more detail how impurity potential is renormalized, using the
variational Monte Carlo �VMC� method and the Gutzwiller-
projected Bogoliubov–de Gennes �BdG� equation,11–13 then
discuss agreement and disagreement with the experiments.

An extensive amount of literature has been devoted for
the impact of impurities on the normal and superconducting

state of the cuprates. A detailed review dedicated to this sub-
ject was recently given by Alloul et al.14 We do not repeat
the whole review here, but the theoretical side may be sum-
marized as follows. Suppose electrons in host metal interact
with each other by the onsite repulsive Hubbard U terms, and
let us put a nonmagnetic impurity in it. Then, very strong
impurity potential �unitary scatterer�, such as a cavity in oth-
erwise uniform systems, tends to induce local magnetic mo-
ments near the impurity if U is large enough, whereas weak
potential �Born scatterer� does not.

However, the local-moment formation in the supercon-
ducting state seems relatively controversial. The moments
appear according to the theory based on the mean-field de-
coupling of the U term, e.g., by Chen and Ting,15 and Harter
et al.16 Although it can be a good approximation for small U,
yet antiferromagnetic correlation is probably underestimated
especially at large U because the superexchange process is
not taken into account explicitly. Considering that the local
moments typically appear at sufficiently large U, it is critical
to know in what range of U the theory is valid. An interesting
contrast is in the theory by Tsuchiura et al.17 based on the
one-site removed t-t�-J model, i.e., an effective U→�
model. They adopted two different Gutzwiller approxima-
tions �GAs� that lead to two different BdG equations. One of
them takes away the double occupancy prohibition in return
for the uniform renormalization of model parameters. This
calculation results in the local-moment formation. It also in-
dicates that J may cause the appearance of the local moment
even if U=0 because this effective model is a “U=0 but
finite J” system. In the other BdG equation of them, each
local model parameter is dressed with an extended
Gutzwiller renormalization factor that depends on the posi-
tion. This calculation in contrast results in the absence of the
local moments because electrons tend to avoid the impurity
and the antiferromagnetism locally collapses. However, these
local renormalization factors are, without local derivation,
speculated from the previously derived formula for the uni-
form system18 and may need to be verified in the future stud-
ies. Tsuchiura’s work was criticized by Wang and Lee,19 who
applied an inhomogeneous slave-boson mean-field theory to
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essentially the same model. The result shows the local mag-
netic moments in the underdoped region. In the slave-boson
mean-field theory, the double occupancy prohibition is re-
laxed by the saddle-point approximation and only its average
is satisfied, which probably reduces the influence of the spin-
spin interaction effectively. To compensate it, Wang and Lee
added a phenomenological residual spin-spin interaction
term, and the result depends on its magnitude. In addition,
Gabay et al.20 recently obtained similar results. Liang and
Lee21 applied the VMC and also concluded that local mo-
ments appear in the underdoped regime.

The strong scatterers introduced above are modeled on
in-plane impurities which substitute for Cu in the CuO2
planes. Besides such unitary scatterers, all cuprate materials
are doped by out-of-plane ions that mostly occupy random
positions in the crystal lattice or interstitial positions. Such
intrinsic impurities may be weak but can be poorly screened
by electrons around them because the cuprates are quasi-two-
dimensional metal. In addition, these weak potentials are not
expected to induce local magnetism. Influence of these
“Born scattering potentials” on the local density of states was
studied by, e.g., Wang and Lee,22 and Nunner et al.23 In fact,
however, the effect of electron correlation on them seems
hardly discussed in the literature, with the exception of Garg
et al.,9 Fukushima et al.,10 and Andersen and Hirschfeld.24

That is a subject we would like to address in this paper.
After we define our model in Sec. II, the renormalization

of impurity-potential matrix elements is shown by the VMC
calculation in Sec. III. Then, the BdG equation based on the
Gutzwiller approximation with local renormalization
factors11–13 are solved in Sec. IV, where we emphasize the
importance of including local chemical potentials through
the comparison with the method by Garg et al.9 Note that
these local chemical potentials are introduced for minimizing
the total energy and are different from those used for the
inhomogeneous slave-boson mean-field theory19,20,25 that are
the Lagrange multipliers to enforce the average no-double-
occupancy condition. Renormalization of smoothly varying
impurity potential is also presented to show anticorrelation
between the gap energy and the coherence peak height com-
patible with large gap distribution, which is consistent with
the experiments.6,26

II. MODEL

We use the t-t�-t�-J model with an impurity term, namely,

H � Htt�t� + HJ + Himp, �1�

Htt�t� � P�− �
i,j,�

tijci�
† cj��P , �2�

HJ � J�
�i,j�

�Si · S j −
1

4
n̂in̂j� , �3�

where ci�
† �ci�� is the creation �annihilation� operator of site i

and spin �, and n̂i���ci�
† ci�. As the hopping, we take tij

= t , t� , t�, for the nearest, second, and third neighbors, respec-
tively, and otherwise zero. The summation in the J term is

taken over every nearest-neighbor pair. The Gutzwiller pro-
jection operator P prohibits electron double occupancy at
every site.

In this paper, we focus on the renormalization of a single
nonmagnetic �-function impurity potential located at i=0,

Himp = V0�
�

c0�
† c0� =

V0

NL
�

k,k��

ck�
† ck��, �4�

except for Sec. IV D, where we briefly discuss the effect of
smoothly varying impurity potential. Here, NL is the number
of sites.

III. VARIATIONAL MONTE CARLO CALCULATION FOR
MATRIX ELEMENT RENORMALIZATION

Here we calculate matrix elements of the impurity poten-
tial with respect to the uniform Gutzwiller-projected quasi-
particle states of d-wave superconductors using the VMC
method. Let us start from a uniform system without impuri-
ties. We assume that the ground state is well approximated
by a Gutzwiller-projected d-wave superconducting state,

	GS� � P
�
p

vp

up
cp↑

† c−p↓
† �Ne/2

	0� , �5�

where

uk ��1

2
�1 +

�k

Ek
�, vk �

�k

	�k	
�1

2
�1 −

�k

Ek
� ,

Ek � ��k
2 + �k

2, �k � �v�cos kx − cos ky� ,

�k � − 2tv�cos kx + cos ky� − 4tv� cos kx cos ky

− 2tv��cos 2kx + cos 2ky� − �v.

Ne is the total number of electrons. The variational param-
eters �v, tv�, tv�, and �v are optimized so as to minimize the
total energy. We also assume that the excited states are well
represented by the projected quasihole wave function,27

	k�� � Pck�
† 
�

p

vp

up
cp↑

† c−p↓
† �Ne/2−1

	0� . �6�

Then, we are able to calculate the matrix elements and spec-
tral weights using the excited quasihole wave function with
the ground-state parameters.

By switching on the impurity potential, these excited
states should be mixed by the matrix elements,

Vk,k� � �k↑	ck↑
† ck�↑	k�↑� + �− k�↑	ck↓

† ck�↓	− k↑� . �7�

We carry out VMC calculation for Vk,k� and show that its
renormalization by the strong correlation is similar to that of
the total spectral weight,

Zk � 	�k�	ck�
† 	GS�	2 + 	�k�	c−k−�	GS�	2, �8�

which is known to be strongly renormalized.28 It is worthy to
be noted that the BCS theory has predicted the matrix ele-
ments of the impurity potential and the total spectral weights
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are Vk,k�
BCS=ukuk�−vkvk� and Zk

BCS=1, respectively. On the
other hand, the GA yields renormalization,

Zk
GA = gt �

2x

1 + x
, �9�

where gt is the Gutzwiller renormalization factor for the hop-
ping term. However, according to the conventional GA, Vk,k�
is not renormalized because it originally comes from a par-
ticle number operator; on the contrary, a GA generalized for
inhomogeneous systems yields renormalization as will be
discussed in the next section.

We plot Vk,k� /Vk,k�
BCS and Zk /Zk

BCS in Fig. 1 as functions of
the hole concentration. Suppose the impurity potential is not
too large. Then, the matrix elements Vk,k� perturb the system
only if the excitation energies of 	k�� and 	k��� are close.
Therefore, here we plot Vk,k� connecting two symmetric
reciprocal-lattice points indicated in the inset of Fig. 1; each
pair of symbols in the inset refers to k and k�, which corre-
sponds to the same symbols of Vk,k� and Zk=Zk� in the plot.
The variational parameters are optimized for each hole con-
centration. Note that Vk,k� is renormalized as strongly as Zk,
and its renormalization factor is quite close to gt. Further-
more, Fig. 2 compares Vk,k� of different bare parameters in

the Hamiltonian. It suggests that the renormalization is in-
sensitive to parameters.

These results may be understood as follows. Let us look
at the Fourier transform of the �-function impurity potential

Eq. �7��. The sum of its diagonal terms �k=k�� just slightly
shifts the chemical potential. What about the off-diagonal
terms �k�k��? If k were a site index, they would be renor-
malized as gt=2x / �1+x� according to the Gutzwiller ap-
proximation, which is smaller than unity and is going to zero
as x→0 because it is more difficult to hop in the presence of
the double occupancy prohibition. Even in k space, if elec-
trons are densely packed in the lattice, it must be similarly
difficult to hop from k to a different k�. Thus, the impurity
potential should be renormalized by a factor similar to gt as
we expected.

IV. GUTZWILLER-PROJECTED BOGOLIUBOV–DE
GENNES EQUATION

A. Renormalization by effective local chemical potentials

We solve a BdG equation derived using the Gutzwiller
approximation with local renormalization factors11–13 for
nonmagnetic systems. By requiring minimization of the total
energy, the BdG Hamiltonian naturally contains effective lo-
cal chemical potentials originating from the derivative of the
local renormalization factors with respect to local particle
densities. In the following, we show that the impurity poten-
tial is renormalized by those local chemical potentials.

Let us assume that a good variational ground state can be
represented in the form of P�		�, where 		� represents a
wave function obtained later by solving a BdG equation. The
operator P� contains a fugacity operator to control the par-
ticle number as well as the original Gutzwiller projection P.
In the following, we use notation:

�Ô�0 �
�		Ô		�
�			�

, �Ô� �
�		P�ÔP�		�
�		P�P�		�

, �10�

for an arbitrary operator Ô. The built-in fugacities allow us
to require conservation of the local electron densities,
namely,

�n̂i� = �n̂i�0 � ni. �11�

Then, the Gutzwiller approximation yields

�ci�
† cj�� � gij

t �ci�
† cj��0, gij

t �� 2xi

1 + xi
·

2xj

1 + xj
, �12�

�Si · S j� � gij
s �Si · S j�0, gij

s �
2

1 + xi
·

2

1 + xj
, �13�

where xi�1−ni.
We consider nonmagnetic systems where 
ij ��ci↑

† cj↑�0
= �ci↓

† cj↓�0 and �ij ��cj↓ci↑�0 are real numbers, and �ij =� ji.
Then, the total energy �H−��in̂i� can be calculated by the
GA as
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FIG. 1. �Color online� Comparison of Vk,k� /Vk,k�
BCS and Zk /Zk

BCS

as functions of the hole concentration x in the case of �t� , t� ,J� / t
= �−0.3,0.2,0.3� optimized at each x. Each symbol represents the
transfer between the k points of the same symbols in the inset.
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FIG. 2. �Color online� Comparison of Vk,k� /Vk,k�
BCS of different

bare parameters. Each symbol represents the transfer between the k
points of the same symbols in the inset.
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EGA = − 4�
�i,j�

gij
t tij
ij − �

�i,j�

J

4

2�3gij

s − 1�
ij
2

+ 2�3gij
s + 1��ij

2 + ninj� − ��
i

ni + V0n0, �14�

where the summation of the kinetic-energy term is taken
over every �i , j� pair. Using 
̂ij ����ci�

† cj�+cj�
† ci�� /4

and �̂ij ��ci↑
† cj↓

† +cj↑
† ci↓

† +cj↓ci↑+ci↓cj↑� /4, the extremum
condition of EGA leads to a BdG equation11,13 represented
by the mean-field Hamiltonian HBdG=��ij�
̂ijdEGA /d
ij

+��ij��̂ijdEGA /d�ij +�in̂idEGA /dni, namely,

HBdG = − �
ij�

gij
t tijci�

† cj� − �
�ij�

J�3gij
s − 1�
ij
̂ij

− �
�ij�

J�3gij
s + 1��ij�̂ij − �

i

�� + �i�n̂i + V0n̂0.

�15�

Note that in contrast to the conventional BdG equation, it
contains the effective local chemical potential

�i �
dEGA

dxi
− �

= − �
j

4
dgij

t

dxi
tij
ij − �

j�nn�

3

2

dgij
s

dxi
J�
ij

2 + �ij
2 � −

J

4
nj� ,

�16�

where the summation of the J term is taken over the nearest
neighbors of site i. By diagonalizing the BdG Hamiltonian,
we obtain HBdG=�n=1

NL En��1n
† �1n+�2n

† �2n�+const, with En
�0 and

��1n

�2n
† � = �

i
� ui

n vi
n

− vi
n ui

n ��ci↑

ci↓
† � . �17�

Then, 		�=�n�1n�2n	0�, ni=2�n�vi
n�2, 
ij =�nvi

nv j
n, and �ij

=�n−ui
nv j

n.
The inclusion of the local chemical potential �i makes it

harder to optimize the local mean fields, and simple iteration
does not converge very well. Strategies to look for the mini-
mum of the total energy E seem to work slightly better. We
have solved the self-consistent equation for the systems of

24
24 sites with the periodic boundary condition. We set
t�=−0.3t and t�=0.2t. Then, J and � are determined using
the uniform system without the impurity so that x is the
desired hole concentration as well as J�3gij

s +1��ij =0.3t.
These values are fixed in solving the equation for the impu-
rity systems, i.e., we neglect O�1 /NL� shift of � caused by
the inclusion of the impurity.

According to Eq. �11�, the expectation value of n̂i is by
definition not renormalized by any “g” factor as the hopping
and the exchange term. However, as one can see in the BdG
Hamiltonian in Eq. �15�, the impurity potential can be com-
pensated by �i. Therefore, we define a renormalized impurity
potential by including difference of �i, namely,

Ṽi = V0�i0 − ��i − ��� . �18�

Here, �� is �i→� and approximately equal to �i of the sys-
tem without the impurity, which is nonzero.29 In the uniform
system, however, one usually redefines �+�� as the chemi-
cal potential and �� does not explicitly appear in the
calculation.29 Figures 3 and 4 show the calculated renormal-
ized impurity potential at the impurity site for various values
of the bare potential V0 and the hole concentration x�0.05.
We have also tried the systems with x=0.025 but were un-
able to reach the energy minimum possibly because there are
a couple of metastable states.

Note that Ṽ0 is strongly suppressed and is quite close to
gtV0, where gt is the Gutzwiller renormalization factor of the
uniform system. These results agree with our VMC results in

the previous section. Here, Ṽ0 deviates upward from gtV0
when V0 is large near the half filling. This is possibly related

to the position dependence of Ṽi. Originally, the impurity
potential is nonzero only at the impurity site. However, after
solving the BdG equation, the renormalized impurity poten-
tial distributes more broadly as shown in Fig. 5. Namely, as
V0 becomes larger and x becomes smaller, the renormaliza-
tion effect reduces at the impurity site whereas it broadens
toward the neighboring sites.

This broadening can be understood as follows. Basically,
energy loss by the impurity potential reduces electron occu-
pation at the impurity site. However, the hole prefers to
move around to gain the kinetic energy. Therefore, to mini-
mize the total energy, the �-function impurity potential is
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V0� t
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0.1

0.2

0.3

0.4

0.5

V�
0�

t
x�0.2

x�0.125

x�0.05

FIG. 3. �Color online� The dots represent the renormalized im-
purity potential at the impurity site as a function of the bare impu-
rity potential with the hole concentrations x=0.05 �blue�, 0.125
�green�, and 0.2 �red�. The broken lines are gtV0.
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FIG. 4. �Color online� The dots represent the renormalized im-
purity potential at the impurity site as a function of the hole con-
centration with the bare impurity potentials V0=0.25t �red�, 1t
�green�, and 1.5t �blue�. The broken lines are gtV0.
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broadened by �i. More explicitly, the contribution to �i from
the kinetic energy contains a factor

dgij
t

dxi
=� 1

2xi�1 + xi�3� 2xj

1 + xj
, �19�

which behaves as �xj /xi near the half filling. Suppose the
local hole densities behave as xi�x�i, xj �x�j with some ex-
ponents �i, � j. Then, dgij

t /dxi�x��j−�i�/2 as x→0. If �i�� j,
then �i or � j diverges and the self-consistent condition is not
satisfied. Therefore, �i=� j, which tends to make the hole
distribution more uniform.

Such extension of the impurity potential is also reported
in the context of the unitary impurity potential by Poilblanc
et al.30 and in the weak-coupling context by Ziegler et al.31

In addition, Bulut32 and Ohashi33 reported that the agreement
between experimental data and the random-phase approxi-
mation is improved by adding phenomenological extended
range potential.

At half filling, the nonmagnetic impurity potential should
not affect the ground state because each site has to be occu-
pied by one electron in any case. However, they do affect the
ground-state energy. In the words of the BdG equation, the
impurity potential is renormalized by �i in HBdG and not in
EGA. This is different from the well-known renormalization
of the hopping and the exchange term described by gij

t and
gij

s ; these renormalization factors influence both the ground
state and the ground-state energy.

B. Local density of states

The projected quasiparticle states P���n
† 		� are approxi-

mately orthogonal to each other.13 We regard them as excited
states and calculate the DOS. Then, the LDOS is represented
by

N�r,�� = grr
t �

n


	ur
n	2��� − En� + 	vr

n	2��� + En�� . �20�

To obtain dense spectra, we use a supercell composed of
24
24 sites whose origin has the impurity, and this super-
cell is repeated so as to construct a superlattice of 10
10
supercells with the periodic boundary condition.34 Then, the
Hamiltonian can be block diagonalized by the Fourier trans-
form with respect to the supercell indices, and the calculation
of expectation values is reduced to an average over many
quasitwisted boundary conditions of the 24
24 site system.

This supercell method is useful to obtain dense energy levels
although it seems to overestimate correlation functions be-
tween very distant sites if the supercell size is too small and
the number of supercells is too large. Except for this super-
cell boundary condition, the other conditions of the calcula-
tion are the same as those in Sec. IV A. Since spectra in
finite systems are discrete, we replace each � function by the
Gaussian distribution with the standard deviation �E=0.02t
to obtain continuous DOS.

Figure 6�a� shows the calculated LDOS at the impurity
site as well as its nearest, second, and third neighbors. The
DOS of the uniform system �V0=0� is also plotted by dotted
lines as a reference. Here, we have chosen V0=1t as the
impurity potential, which is of the same order as the renor-
malized band width �8gtt�. Nevertheless, it is well screened
by �i and the LDOS is not very site dependent in agreement
with results in Sec. IV A. At the impurity site, the hole den-
sity is larger, and thus grr

t is large. As a result the LDOS is
also larger than those of the other sites. The peak at E�
−0.37t is the Van Hove peak; the band renormalization by gt
makes it closer to the Fermi surface. In fact, another Van
Hove peak appears in the positive bias at E�0.37t. It is
much weaker than the negative-bias Van Hove peak and only
appears as a small shoulder of the coherence peak in the
resolution of Fig. 6�a�. Some small portion of the original
electron band around the Van Hove peak is unoccupied in the
mean-field superconducting ground state due to the electron-
hole mixture. Even though that portion is small, the singular
DOS enhances it to yield the positive-bias Van Hove peak.

For comparison, we also show in Fig. 6�b� the results of
the system without the strong correlation, i.e, let us set gij

t

=gij
s =1 and �i=0 in Eq. �15� and solve the BdG equation. J

and � are determined in the same way as in the strongly
correlated case, i.e., 4J�ij =0.3t for the uniform system.
Here, we use supercells of 36
36 sites to obtain dense spec-
tra; if the same system size is used, energy-level spacings are
larger than those in the correlated systems due to the wider
bandwidth. The impurity potential is also V0=1t. Note that it
is this time much smaller than the bandwidth 8t. Neverthe-
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FIG. 5. �Color online� The position dependence of the renormal-
ized impurity potential for V0=1t.
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FIG. 6. �Color online� The LDOS for one impurity system with
V=1t and x=1 /8, at the impurity site and its nearest, second, and
third neighbors calculated by three different BdG equations: �a�
with gij

t , gij
s , �i, �b� without correlation �gij

t =gij
s =1, �i=0�, and �c�

without the local chemical potential �Ref. 9� �with gij
t , gij

s , but �i

=0�. The dotted lines are the DOS in the uniform system �V0=0� as
a reference.
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less, comparing Figs. 6�a� and 6�b�, it is clear that the system
without strong correlation is much more disordered than the
one with the correlation.

From Fig. 6�b�, it is clear that the �-function potential
makes the LDOS asymmetric.22,23 That is, some weight of
the LDOS tends to move to the right at the impurity site and
to the left at the nearest-neighbor site. The shift is large at
high energy and small at low energy. This asymmetry ap-
pears because the �-function potential lifts the degeneracy of
two quasiparticles: �i� a linear combination between an elec-
tron state at site 1 and a hole state at site 2 or �ii� a linear
combination between an electron state at 2 and a hole state at
1. We discuss it more in detail using a two-site system in the
Appendix. With the strong correlation in Fig. 6�a�, however,
the asymmetry is less pronounced and the LDOS seems more
symmetric. Most likely, the broadening of the impurity po-
tential by �i results in weakening of the asymmetry.

C. Comparison with other strongly correlated BdG equations

1. Importance of including the local chemical potential
�i

Garg et al.9 used a similar BdG equation. Although the
definition of the local renormalization factors is the same,
they do not take into account the effective local chemical
potential �i that minimize the total energy. They have re-
ported that the spatially averaged LDOS shows protected V
shapes at low energy and stated that the correlated systems
are less disordered. For the testing purpose, we have also
solved their BdG equation and show the resultant LDOS in
Fig. 6�c�. The parameters are the same as Fig. 6�a�, and the
uniform limits of these two BdG equations are identical. We
have found that the LDOS before the spatial average is ac-
tually quite disordered, especially at the impurity site, and
that the V-shaped LDOS appears only after the average.
Therefore, it seems difficult to conclude that the LDOS in
Fig. 6�c� is less disordered than the LDOS in Fig. 6�b�, in our
opinion.

A more serious problem of their method appears in the
local hole density as a function of the bulk hole density
shown in Fig. 7. As already mentioned above, the nonmag-
netic impurity potential at half filling should not affect the
ground state because each site has to be occupied by one
electron in any case. Hence, one can naturally imagine that
the local hole density x0 at the impurity site approaches the

bulk hole density x as x→0. However, if �i is not taken into
account, x0−x increases as x decreases. Therefore, it is ques-
tionable if the method by Garg et al. correctly captured the
properties of the strongly correlated systems.

Capello et al.35 solved the BdG equation with extended
Gutzwiller renormalization factors but without the local
chemical potential. Although we have not duplicated their
results, we speculate that they have similar problems as Garg
et al. because of the lack of the local chemical potential to
minimize the total energy.

2. Large U instead of the Gutzwiller projection

Andersen and Hirschfeld24 and some references therein
used the BdG equation without the Gutzwiller renormaliza-
tion factors �gt=gs=1�. They took into account the electron
correlation by the Hubbard U term of the mean-field level. In
that case, the screening effect similar to the one described in
this paper can be obtained because −Uni�̄ plays a role of our
local chemical potential �i. Since the impurity potential re-
duces electron occupation, the Coulomb energy loss is
smaller there. Namely, summing up the potential and Cou-
lomb energy loss, the total loss at the impurity site become
less prominent by U. Note that, however, the strength of the
screening depends on how one chooses U. A problem is that
the mean-field decoupling of the U term may underestimate
the exchange energy and overestimate the kinetic energy es-
pecially near the half filling; the ground state would be
strongly influenced by them.

D. Smoothly varying impurity potential

As has been shown above, short-range impurity potential
is screened by �i. Accordingly, what remains must be the
smooth variation in the potential. Here, we demonstrate the
influence of the strong electron correlation on it using the
Coulomb potential.

Instead of Himp, we consider the Coulomb potential from
randomly located off-plane impurities, namely,

Hsmooth � �
r�

Vrcr�
† cr�, �21�

Vr � �
�=1

Nimp VC

��r − r��2 + d2
, �22�

where Nimp is the number of impurities, r� is the position of
�th impurity projected on the xy plane, and d is the off-plane
distance. Here, we take VC=1t and d=1 and adjust � to
satisfy x=1 /8 simultaneously with the self-consistency con-
dition. In addition, one supercell has 20
20 sites with
Nimp=12 impurities, and the same impurity configuration is
repeated so as to construct a superlattice of 10
10 super-
cells. For simplicity, in determining the Coulomb potential in
Eq. �22�, we use only one of the cells, i.e., the system of
20
20 sites with the periodic boundary condition.

Figure 8 shows the LDOS at 4 sites A, B, C, and D, each
of which has a different hole concentration. The LDOS in
hole-rich regions �e.g., A� has high coherence peaks with low
gap energy. In contrast, hole-poor regions �e.g., D� has low

0 0.05 0.1 0.15 0.2
x

0

0.05

0.1

0.15
x 0
�

x without Μi

with Μi

FIG. 7. The relative hole density x0−x at the impurity site as a
function of the bulk hole density x solved for V0=0.25t by the two
different BdG equations; without �i �Ref. 9� and with �i.
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coherence peaks with high gap energy. Figure 9 compares
the spatial dependence of the bare impurity potential Vr

−NL
−1�rVr and the renormalized impurity potential Ṽr

−NL
−1�rṼr. Here, we have subtracted the spatial average of

the potential. It is clear that the renormalized impurity poten-
tial has much smaller and smoother variation.

Nunner et al.23 pointed out for the conventional BdG
equation with smoothly varying potential that the LDOS at
site r is similar to the DOS in the uniform system with
shifted chemical potential �̃=�−Vr. This argument can be
also applied to our system. However, the Gutzwiller renor-
malization factors make a difference in the relation among
the hole density xr, the gap energy, and the height of the
coherence peaks. In the systems without the Gutzwiller pro-
jection, �ij is determined by the DOS near the Fermi level.
Namely, �ij takes maximum when the chemical potential is
at the Van Hove singularity. Accordingly, when �ij is large,
the gap energy and the peak height are also large. In contrast,
with the Gutzwiller renormalization factors, as x→0, �i� the
band shrinks by gij

t and thus the DOS near the Fermi level
increases and �ii� the pairing interaction is enhanced by gij

s .
Because of �i� and �ii�, �ij and the gap energy monotonically
increases as x→0. Furthermore, the LDOS contains an extra
factor gii

t , and thus the peak height decreases as x decreases.
Note that this anticorrelation between the gap energy and

the peak height as well as the large gap distribution is con-

sistent with the experiments.6,26 However, according to our
calculation, the large spatial variation in the LDOS accom-
panies large variation in the hole density, which has yet to be
verified by the experiments.

V. SUMMARY AND DISCUSSION

In this paper, we have investigated the renormalization of
the impurity potential by the strong correlation. The VMC
calculation has shown that impurity potential scattering ma-
trix elements between Gutzwiller-projected quasiparticle ex-
cited states are as strongly renormalized as the hopping
terms. It may be understood by the Fourier transform of the
�-function impurity potential having a form of the hopping
term in k space. The �real-space� hopping term is known to
be renormalized by a factor less than unity because it is more
difficult to hop in the presence of the double occupancy pro-
hibition. Even in k space, if electrons are densely packed in
the lattice, it must be similarly difficult to hop from k to k�
�k then the impurity potential and the hopping term should
be renormalized similarly.

Such reduction in the impurity potential is also seen by
the BdG equation with local Gutzwiller renormalization fac-
tors. Near the half filling of the strongly correlated systems,
the influence of the nonmagnetic impurity potential on the
ground state is small because each site has to be occupied by
almost one electron in any case. However, the impurity po-
tential does affect the ground-state energy. Such properties
appear by taking into account effective local chemical poten-
tial, which is paid little attention to in the literature. In addi-
tion, the local chemical potential effectively broadens the
impurity potential because holes prefer to move around to
gain the kinetic energy. Effect of smoothly varying impurity
potential has been briefly discussed. It shows large gap dis-
tribution. If the Gutzwiller renormalization factors are taken
into account, the gap energy and the peak height are anticor-
related. These properties are consistent with the
experiments.6,26

In fair comparison, there are also some disagreements
with the experiments. According to our results, short-range
nonmagnetic potential variations are reduced, thus the sys-
tem is more uniform, and accordingly the d-wave supercon-
ductivity can be robust. However, in the experiments, the
system seems quite disordered but still the d-wave is robust.
Such short-range disorder may be introduced by spatial
modulation of tij or J, which can be enhanced by the strong
correlation,10 or by magnetic impurities, or by the electron-
lattice interaction.36

In addition, although the smooth impurity potential varia-
tion yields anticorrelation between the gap energy and the
peak height, it does not show the almost spatially indepen-
dent V-shaped LDOS at low energy seen often in the experi-
ments, which can be explained instead in the case of the
rapid potential variation.37 In our previous paper,37 we have
discussed the LDOS of stripe states, where �ij contains two
components; one is spatially uniform and the other is oscil-
lating, typically with wave number q=� /4 or � /2. Then, the
V-shaped gap is determined by the uniform component, and
the oscillating component influences it little. As a result, the
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FIG. 8. �Color online� �left� The LDOS at 4 sites A, B, C, and D
indicated in the right figure, for the system with smoothly varying
potential with x=1 /8, VC=1t, d=1, Nimp=12, and supercell size
20
20 sites solved by the Gutzwiller-projected BdG equation.
�right� The hole density distribution in a supercell. The white dots
are positions of the impurities.
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linear slope of V shape is robust �it does not have much
spatial dependence�. This is rather counterintuitive because
one may think that the local gap could be determined by �ij.
However, the superconducting gap is not determined by such
local properties, but by “coherence,” i.e., spatial dependence
of �ij. Let us recall that in the case of the zero-momentum
pairing as the conventional BCS theory, the spin-up electron
band couples with the spin-down hole band �upside-down
spin-down electron band�; these bands intersect at the Fermi
level, and a gap opens by a nonzero superconducting order
parameter. On the other hand, the oscillating components
contain only pairing with nonzero center-of-mass momen-
tum. Then, the spin-up electron band couples with the
q-shifted �or multiples-of-q shifted� spin-down hole band.
The point is, these bands typically intersect not at the Fermi
level except for limited points. In such cases, the V shape of
the LDOS is not affected a lot.

Similarly, oscillations of the variational parameters other
than �ij with wave number q mix “the bare band” and “the
bands shifted by multiples of q.” Such terms change the band
structure especially near band intersections. However, this
change in the band structure is not related to the supercon-
ductivity, at least in the mean-field approximation. The su-
perconducting DOS depends on where one puts the chemical
potential, but general properties near the V-shaped LDOS is
determined by �ij.

The smooth impurity potential variation considered in
Sec. IV D is similar to the stripe states with q�0. Since q is
small, the oscillating components of �ij has effect similar to
the uniform component q=0. Namely, it affects every state at
the Fermi level. However, the gap has now spatial depen-
dence because q is not completely zero. In this case, the local
gap is determined by �ij; the LDOS at sites i is similar to the

DOS in the uniform system with �̃x=−�̃y =�i,i+x̂, 
̃=
ij, and
�̃=�−Vi. Therefore, there is nothing like the “uniform com-
ponent” in the argument of the stripe state, and thus the
linear slope of V shape in the LDOS is not robust anymore.
This issue will be addressed in the future.
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APPENDIX: LDOS ASYMMETRY CAUSED BY
�-FUNCTION POTENTIAL

As shown in Fig. 6, the �-function potential causes asym-
metry in the LDOS near the impurity site. Such asymmetry
may be important because some STM experiments analyze
data by taking the ratio between intensities of positive and
negative bias;7 the symmetric part of the LDOS is canceled
and its asymmetric part remains. To explain the origin of the

asymmetry, let us diagonalize the BdG Hamiltonian of a
simple two-site problem analytically in the following. We
know that it is not realistic to apply the mean-field approxi-
mation to two-site problems. However, it provides us some
insight into numerical solutions in the bulk systems.

Suppose the potentials at sites 1 and 2 are V��0� and −V,
respectively. By putting the states in the order of electrons
1↑, 2↑, and holes 1↓, 2↓, the BdG Hamiltonian matrix is
written as

H2site =�
V − t 0 �

− t − V � 0

0 � − V t

� 0 t V
� . �A1�

Let us start from a simple case of t=0 and assume V��.
Then, � mixes 1↑ electron and 2↓ hole with the equal
weights. We call the linear combination of them with posi-
tive and negative energy the quasiparticle A+ and A−, respec-
tively. Similarly, B� denotes the linear combination of 2↑
electron and 1↓ hole with positive/negative energy.

If V=0, A and B are degenerate. Finite but small V causes
energy difference between A and B, namely, EA� = ��+V,
EB� = ��−V. In the ground state, A− and B− are occupied,
but A+ and B+ are unoccupied. First we focus on 1↑. Then,
the electron addition spectrum is at E=EA+, the removal is at
E=EA−. Namely, the finite V just shifts the whole spectra by
V, and the local spectra are not symmetric around E=0. On
the other hand, the spectra of site 2 shift by −V. As a result,
the spectra summed over sites 1 and 2 are still symmetric. As
for 1↓, the addition is at −EB− =EA+, and the removal is at
−EB+ =EA− �these negative signs originate from the treatment
of 1↓ as a hole�, which are identical to the spectra of 1↑ as
expected.

Next, let us consider t�0. Then, t mixes A+ and B−, and
the eigenstates are linear combinations of them whose
eigenenergies are �
t2+ ��+V�2�1/2. The eigenenergies of su-
perposition of A− and B+ are �
t2+ ��−V�2�1/2. As t in-
creases, the LDOS asymmetry becomes weaker, but it never
disappears.

Back to the bulk systems, maybe we can physically ex-
plain the asymmetry as follows. Since J term causes pairing,
a Cooper pair is formed more or less between nearest neigh-
bors �site 1,2� when a snapshot is taken. This Cooper pair is
a resonance of “states where sites 1 and 2 are occupied by
electrons” and “states where both are occupied by holes.”
Destruction of the pair leaves a quasiparticle. There are two
possibilities for it: �i� an “electron at site 1 and hole at site 2”
and �ii� an “electron at 2 and hole at 1.” The �-function
potential lifts the degeneracy of these quasiparticles. That
results in the asymmetry in the local spectra although the
bulk spectra are symmetric as in the two-site problem above.
In the bulk system, the spectra are continuous, and the spec-
tral shift by the impurity potential is larger at high energy
than at low energy because �i� the near-nodal quasiparticles
at low energy are less influenced by the impurity potential
because there are not many states to mix with and �ii� the
shift is caused by � and it is smaller at lower energy.
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